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The behaviour of a dispersion of infinitely polarizable slender rods in an electric field
is described using theory and numerical simulations. The polarization of the rods
results in the formation of dipolar charge clouds around the particle surfaces, which
in turn drive nonlinear electrophoretic flows under the action of the applied field.
This induced-charge electrophoresis causes no net migration for uncharged particles
with fore—aft symmetry, but can lead to rotations and to relative motions as a result
of hydrodynamic interactions. A slender-body formulation is derived that accounts
for induced-charge electrophoresis based on a thin double layer approximation, and
shows that the effects of the electric field on a single rod can be modelled by a linear
slip velocity along the rod axis, which causes particle alignment and drives a stresslet
flow in the surrounding fluid. Based on this slender-body model, the hydrodynamic
interactions between a pair of aligned rods are studied, and we identify domains of
attraction and repulsion, which suggest that particle pairing may occur. An efficient
method is implemented for the simulation of dispersions of many Brownian rods
undergoing induced-charge electrophoresis, that accounts for far-field hydrodynamic
interactions up to the stresslet term, as well as near-field lubrication and contact
forces. Simulations with negligible Brownian motion show that particle pairing indeed
occurs in the suspension, as demonstrated by sharp peaks in the pair distribution
function. The superposition of all the electrophoretic flows driven on the rod surfaces
is observed to result in a diffusive motion at long times, and hydrodynamic dispersion
coefficients are calculated. Results are also presented for colloidal suspensions, in
which Brownian fluctuations are found to hinder particle pairing and alignment.
Orientation distributions are obtained for various electric field strengths, and are
compared to an analytical solution of the Fokker—Planck equation for the orientation
probabilities in the limit of infinite dilution.

1. Introduction

The manipulation of small particles suspended in a liquid is a challenging task,
with applications in fields as diverse as separation science, analytical chemistry, micro-
fluidics, or microrheology. A simple and widely used strategy for controlling particle
motions consists of utilizing externally applied electric fields, which under certain con-
ditions can cause particle migration and reorientation. The basic mechanism for
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this electrophoretic motion has been described extensively, and falls into the broad
category of linear electrokinetic phenomena (e.g. Saville 1977; Russel, Saville &
Schowalter 1989; Hiemenz & Rajagopalan 1997; Hunter 2001). A uniformly charged
surface in an electrolyte attracts a cloud of counterions, which accumulate near the
surface, resulting in the formation of an electrical double layer (EDL). The application
of a steady electric field exerts a net force on the excess counterions, which migrate
along the local electric field lines and drag the fluid with them. Near a fixed surface
such as a channel wall, this effective body force inside the EDL drives an electro-
osmotic flow in the fluid bulk. In the case of a freely suspended particle such as a
colloid or macromolecule, electrophoretic migration occurs.

When the characteristic thickness 4p of the EDL is much less than the characteristic
radius of curvature of the particle, and if the applied field is sufficiently weak for
surface conduction to be negligible, a boundary layer analysis of the electrokinetic
and flow equations shows that to a good approximation the effects of the body force
on the charge cloud can be captured by an effective slip velocity u, at the outer edge
of the EDL, given by the Helmholtz—Smoluchowski equation:

u, = ——F;, (1.1)

where ¢ and p are the permittivity and viscosity of the fluid, respectively, and E;
is the value of the electric field at the edge of the EDL, where it is tangential
to the local surface. The parameter ¢, called zeta-potential, is the electric potential
drop across the double layer, and is considered a material property. The Helmholtz—
Smoluchowski equation (1.1) can be used as a boundary condition for the flow
equations outside the charge cloud. For a freely suspended spherical particle this slip
boundary condition was shown by Smoluchowski (1903) and Henry (1931) to yield
the following translational velocity in an applied field E:

v="E,. (1.2)
w

This classical result, which assumes a spherical shape, uniform charge density,
absence of polarization, thin electrical double layer and weak applied field, was
later generalized to more complex situations. First Morrison (1970) proved that the
same result holds for any particle shape under the same assumptions, and that the
torque on a non-spherical particle is zero. O’Brien (1983) and O’Brien & Ward
(1988) considered the effects of surface conduction, which results from charge build-
up in some regions of the EDL and can be significant when the applied field is
not weak or as the zeta-potential increases. Ion transport within the EDL was also
addressed by Solomentsev, Pawar & Anderson (1993), who also accounted for a
non-uniform surface charge density. Solomentsev & Anderson (1995) studied the
effects of non-homogeneous electric fields, and showed that electric field gradients
cause rotation, while second gradients contribute to translation without rotation. A
variety of non-spherical particle shapes have also been considered, including spheroids
(O’Brien & Ward 1988; Fair & Anderson 1989; Solomentsev & Anderson 1995), disks
(Sherwood & Stone 1995), rod-like particles (Han & Yang 1996; Chen & Koch 1996),
and slender bodies (Solomentsev & Anderson 1994; Sellier 2000).

While many investigations have addressed the case of particles with a fixed, possibly
non-uniform, charge density, the present paper considers particles that can acquire
a surface charge by polarization. Typical examples include polarizable dielectric
particles and metallic colloids, which recently have found applications in analytical
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chemistry and biological assays (e.g. Nicewarner-Pefia et al. 2001; Walton et al. 2002).
The behaviour of polarizable colloids in an electric field was previously studied in a
series of papers by Dukhin and coworkers (Gamayunov, Murtsovkin & Dukhin 1986;
Dukhin & Murtsovkin 1986; Dukhin 1986), the results of which were later summarized
by Murtsovkin (1996). As explained in these papers, the polarization of a suspended
sphere due to an applied electric field results in the formation of a dipolar charge
cloud similar to the electrical double layer of classical electrophoresis, the effects of
which can be modelled by an effective non-uniform zeta-potential. The action of
the electric field on this charge cloud in turn drives a nonlinear electrophoretic flow
around the particle: this flow, which has a quadrupolar structure, does not lead to a
net particle motion in the case of a sphere, but can create relative motions between
nearby particles as a result of hydrodynamic interactions. Experimental observations
of this induced flow were reported by Gamayunov, Mantrov & Murtsovkin (1992)
and recently by Levitan et al. (2005).

The general framework for the modelling of these flows was laid out in detail in
the context of fixed electrodes in microfluidic devices by Bazant & Squires (2004)
and Squires & Bazant (2004), who named the phenomenon induced-charge electro-
osmosis. The terminology of induced-charge electrophoresis was also proposed in the
case of freely suspended particles. More recently, Squires & Bazant (2006) considered a
variety of situations where broken symmetries in induced-charge electrophoresis (such
as shape anisotropy, non-uniform surface properties, or non-uniform applied fields)
can result in particle motions. An important conclusion of their work is that shape
anisotropy can yield quite different behaviours than in the case of perfectly spherical
particles: departures from sphericity indeed result in the rotation and alignment of
the particle in the direction of the electric field, while shape asymmetry can lead to
the migration of a particle carrying no net charge. Some of these effects were also
described recently by Yariv (2005), who derived general formulae for the linear and
angular velocities of a particle of arbitrary shape.

In this work we focus on the effects of hydrodynamic interactions on the
particle dynamics in suspensions of infinitely polarizable slender rods undergoing
induced-charge electrophoresis. In particular, we wish to determine how the induced
electrophoretic flows on the particle surfaces influence statistical properties such
as orientation probabilities, pair probabilities, and hydrodynamic diffusivities in
suspensions of hydrodynamically interacting particles. We start by considering the
case of a single particle in §2, where we derive a simple slender-body formulation
that captures the effects of the induced-charge electrophoresis on both the particle
dynamics and the surrounding fluid flow. This slender-body model combined with the
method of reflections is used to investigate pair interactions in suspensions of aligned
rods in § 3. To obtain more quantitative information on the behaviour of systems of
many particles, we describe in §4 a method for the simulation of periodic systems
of interacting rods that accounts for induced-charge electrophoresis, far-field and
near-field hydrodynamic interactions, and Brownian motion. Simulation results are
presented for both non-Brownian and Brownian suspensions in § 5, where orientation
probabilities, pair probabilities, and hydrodynamic dispersion are all discussed in
detail. A summary and concluding remarks are given in §6.

2. Induced-charge electrophoresis of a polarizable rod

The basic theory and formalism for induced-charge electrokinetic phenomena were
discussed in detail in the case of an infinite cylinder by Squires & Bazant (2004),
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FIGURE 1. Problem geometry: the major axis of the spheroid, denoted by a unit vector p, is
assumed to be aligned in the z-direction, and forms an angle ¢ with respect to the direction of
the applied electric field: E., - p= E., cos¢. The azimuthal angle in the (x,y)-plane is denoted
by 6.

who also justified them using an asymptotic analysis. In § 2.1 we present an extension
of their theory to the case of a polarizable rod-like particle, which for simplicity we
take to be a spheroid. The limit of high aspect ratio, which is examined in §2.2 and
§2.3, will yield results that are independent of the exact shape of the particle. Focus
is placed on the derivation of a simple model that encompasses the electrophoretic
motion of the particle while capturing the induced hydrodynamic interactions.

2.1. Basic theory

Consider a conducting polarizable spheroid in an electrolyte, to which an electric
field E,, is applied as shown in figure 1. We define a coordinate system such that the
major axis of the spheroid, whose direction is given by a unit vector p, lies along the
z-direction, and without loss of generality we can assume that both vectors E,, and
p lie in the (x,z)-plane and form an angle ¢: E, - p=E,, cos¢. Let 2/ and 2a be the
lengths of the major and minor axes of the spheroid, respectively. We denote by y
the particle aspect ratio, and by « its inverse, which will prove to be a useful quantity
in the following discussion:

y =o' =1/a. (2.1)
We also introduce an abscissa s € [/, [] along the axis of the particle and a cylindrical
coordinate system (r, 0, z) where r> =x%+ y? and 0 is the azimuthal angle in the (x, y)-
plane, and let x =rF + zZ denote a general position vector. With these definitions the
equation for the surface 35 of the spheroid can be written as

2 2 2 2 2
G AR S S 2.2)
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2.1.1. Electric problem

When placed in a uniform electric field, a conducting particle modifies the field in
such as way that the field lines intersect its surface at right angles. In a net neutral
medium, the electric potential @ therefore satisfies Laplace’s equation:

Vi =0, (23)
subject to the conducting boundary conditions:
D(x) = D as x €05, (24)
Vo(x) > —E, as|x| — oo,

where @, is the uniform potential of the particle. As argued however by Squires &
Bazant (2004), this configuration is not stable as the electric field in the electrolyte
results in the migration of ions along the field lines with a current J =0 E (where
o is the conductivity of the solution). These ions accumulate on the surface of the
particle which itself polarizes, resulting in the formation of a dipolar charge cloud
similar in nature to the electrical double layer of classical electro-osmosis. The double
layer, which is net neutral, has the effect of repelling the electric field lines so that at
steady state the particle and its EDL behave like an insulator.

In the following discussion we make the assumptions of thin EDL and weak applied
fields. The first assumption states that the characteristic thickness Ap of the double
layer is much less than the characteristic radius of curvature of the particle:

A
L «. (2.5)
a

For a symmetric electrolyte the thickness Ap, or Debye screening length, is defined as

ekT
= - 2.
40 2no(ze)?*’ (26)

where ¢ is the electric permittivity of the electrolyte, k is Boltzmann’s constant, T is
the absolute temperature, ng is the ionic concentration in the bulk of the electrolyte,
and ze is the charge of a single ion. Under the thin EDL assumption a boundary
layer approximation can be used to derive new boundary conditions for the electric
field that apply at the edge of the EDL. Note that the thin EDL assumption is rather
severe in the case of slender particles addressed here, since the particle thickness a can
be quite small: it is likely therefore to apply only at relatively high salt concentrations,
for which the Debye screening length is very small, or for mesoscopic or macroscopic
particles, whose thickness a remains relatively large. In other cases the effects of finite
EDL thickness are likely to come into play, and would require a different treatment.
Finally, the weak applied field condition, or Debye—Hiickel approximation, can be
stated as Ea < kT /ze and ensures that surface conduction can be neglected.
Under these assumptions the boundary conditions equation (2.4) can be replaced
by the following insulating boundary conditions:
n-Vo(x)=0 asxeds, 57
Vo(x) > —E,, as|x|— oo,} 27
where n is a unit outward normal on the particle surface. Equation (2.7) technically
applies at the outer edge of the boundary layer, but can be safely enforced on the
particle surface as we assumed that the Debye length is much less than the radius of
the particle. This boundary condition, which can be justified by matched asymptotics
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(Squires & Bazant 2004), results in electric field lines that are everywhere tangential
to the particle surface.

Equations (2.3) and (2.7) for a spheroid admit an analytical solution, which can be
obtained by the method of singularities (Chwang & Wu 1974, 1975; Han & Yang
1996). The electric field outside the spheroid is sought as that due to a line distribution
of potential dipoles along the focal axis:

E(x) = {l—l—/ (c* —sH)[B D(x — s2;2)2 + B D(x — s2; %)X] ds} -E,; (28)
¢ = (I>—a*)"? is the half-focal length of the spheroid, and D(x;a) is the field induced
by a three-dimensional potential dipole of strength a:

) a a (a+x)x
D(x,a)=V(V-;> _F+3 5

(2.9)

Equation (2.8) satisfies Laplace’s equation by construction. The integral can be
computed analytically (Chwang & Wu 1975), and enforcing the boundary condition
at the surface (n - E(x)=0) allows one to solve for the constants g and B, :

1—1—(1—&2)1/2)]1

1—(1—a?)2 (2.10)

B =a’ {—4(1 — a2 + 20’ log <

1 1 — 212 -1
B =a? {2(1 — )2 —4(1 — a?)*? — 207 log (Mﬂ . (2.11)

After manipulation, the electric field and potential on the surface of the spheroid are
found to be

s={—nn)-G-E,, (2.12)
&, =—x-G-E,. (2.13)
G is the following geometric tensor:
G=Gzz+ G, (I—22), (2.14)
with
(1 _ a2)3/2 1— a2)3/2
G = —2T 5, GL= —4(Tﬂl. (2.15)

Equations (2.10)—(2.15) are equivalent to those given by Stratton (1941) and Fair &
Anderson (1989), which were obtained using ellipsoidal harmonics. Figure 2 shows
typical field lines in the (x,z)-plane calculated for various orientations of the electric
field. Note that these field lines differ substantially from those obtained in two
dimensions, by conformal mapping for instance, especially when the field is not
aligned with the direction of the major axis: the deflection of the field lines in figure 2
is quite weak and the electric field only differs from its value at infinity in a thin layer
near the surface of the spheroid. This comes from the fact that the geometry is three-
dimensional and a significant azimuthal field exists when ¢ #0, so that the deflection
of the field lines occurs on length scales of the order of the spheroid thickness 2a.
Equations (2.8)—(2.9) also show that the electric field disturbance decays quite rapidly
as 1/|x|* (vs. 1/|x|? in two dimensions), and Taylor expansions of B, and B, as @ — 0
show that both of these coefficients scale as a?:

3

l
E(x)—E, ~ E. o’

P (2.16)
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¢ =n/2

FIGURE 2. Electric field lines, in the (x,z)-plane around a non-conducting spheroid of aspect
ratio y = 6.5 for various orientations ¢ of the electric field, calculated from equation (2.8). In
three dimensions the deflection of the streamlines occurs over lengths scales of the order of
the particle radius a, and the disturbance to the imposed field is very weak.

The perturbation to the imposed uniform electric field in the case of slender particles is
therefore very weak, and we can safely expect electric interactions between particles in
a dilute suspension to be negligible. This is to be contrasted with the flow disturbance
due to induced-charge electrophoresis, which as we show in §2.2 decays more slowly
as 1/|x|?, and scales with the large dimension 2/ of the particle.

2.1.2. Slip velocity and flow problem

The electric potential at the outer edge of the electrical double layer is equivalent
to an induced zeta-potential, which varies along the surface of the particle and scales
linearly with the imposed field. Following Squires & Bazant (2004, 2006), we can
write the total zeta-potential on the surface as

((x) =P — D(x) =Dy +x-G-E,, for x €39S, (2.17)

where the constant potential @, is determined to ensure that the area average of
Z(x) yields the native zeta-potential ¢, of the particle surface, which is assumed to be
uniform:

1/ {(X)dszfo, 1e. ¢0:§0+1/ @s(x)dS, (218)
S EN S kN

where S denotes the surface area of the spheroid. Note that for the surface potential
equation (2.13) determined in §2.1.1, the constant potential @ is simply the native
zeta-potential: @y = ;. The non-uniform zeta-potential equation (2.17), along with the
expression for the tangential component of the electric field (equation 2.13), can be
substituted into the Helmholtz—Smoluchowski equation (1.1) for the electrophoretic
slip velocity on the surface of the particle, yielding

uy(x) = _%E‘v = —%(Co +x:G-Ey) X [(I—nn)-G-E,]. (2.19)
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This slip velocity contains a linear contribution —eZyE, /i, which is due to the native
zeta-potential and corresponds to classical electrophoresis (Fair & Anderson 1989),
and a quadratic contribution —g(x-G- E)E,/u, which is induced by the polarization
and is responsible for induced-charge electrophoresis.

Fair & Anderson (1989) made use of the Lorentz reciprocal theorem to derive the
linear and angular velocities of a spheroid undergoing phoretic motion in Stokes flow
with an arbitrary slip velocity:

U=-@3V,)" / /o S(n - x)v,(x)dS, (2.20)

2= —(2Vp)*1 [lfzpp—i- (@*+ 1> - pp)] . //as(n cx)x X vy(x)dS, (2.21)

where V, =4nla®/3 is the volume of the spheroid. Equations (2.20)—(2.21) are a special
case of the more general expressions found by Yariv (2005). It can be shown that the
linear part of the slip velocity leads to translation of the particle without rotation as
in classical electrophoresis, while the quadratic part does not cause translation but
results in a rotation that tends to align the particle in the direction of the electric field.
As noted by Bazant & Squires (2004), Yariv (2005), and Squires & Bazant (2006), the
absence of a translational induced-charge electrophoretic velocity is a consequence of
the fore—aft symmetry of the particle: an asymmetric particle would feel a quadratic
translational velocity that, quite interestingly, would not change sign upon reversal of
the electric field. In the remainder of the paper we will focus on the induced-charge
effects and therefore discard the linear term in the slip velocity (¢ = 0), as it has been
studied extensively in the past (e.g. Fair & Anderson 1989; Solomentsev & Anderson
1994).

In addition to causing rotation, the slip velocity also drives a disturbance flow
in the surrounding fluid. The induced velocity can be obtained as a solution of the
Stokes equations:

—uVu+Vp=0, V-u=0, (2.22)
subject to the boundary conditions:

ux)=U+ 2 xx+u,(x) asx€as,
u(x) — 0 as |x| — oo.

(2.23)

Once again, the slip boundary condition in equation (2.23) applies at the outer edge
of the electrical double layer, but can be enforced on the particle surface in the thin
EDL limit. Except in a few special cases such as a perfect sphere or an infinite cylinder
(Squires & Bazant 2004) as well as slightly deformed spheres (Squires & Bazant 2006),
the complexity of the slip velocity equation (2.19), which depends on both coordinates
z and 6 on the surface of the particle, precludes one from solving equations (2.22)—
(2.23) analytically. Numerical solutions could be obtained using boundary integral
methods, such as that described by Youngren & Acrivos (1975), which are easily
modified to allow a slip boundary condition. Such methods however are costly and
would only allow the calculation of the flow around a few particles. As we show in
the next section, the case of high-aspect-ratio particles (y =a~! > 1) is amenable to
an approximate solution based on slender-body theory.

2.2. Slender-body formulation

Slender-body theory for Stokes flow approximates the velocity disturbance induced
by a particle whose length is much greater than its radius by a line distribution of
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point-force singularities along the particle axis. It was first introduced by Batchelor
(1970) and Cox (1970) for a rigid axisymmetric particle in a prescribed flow field.
Its application to electrophoresis was described by Solomentsev & Anderson (1994);
recently Sellier (2000) considered the more general case of a body of non-uniform zeta-
potential and non-circular cross-section in an axisymmetric electric field. Batchelor’s
result, modified to include a slip boundary condition on the particle surface by
Solomentsev & Anderson (1994), relates the linear and angular velocities of the
particle to the imposed fluid velocity #’ (which may include the velocity disturbance
in the fluid due to other particles), slip velocity u,, and line distribution of point
forces f(s) in the following way:

log 2
CY (14 pp)- f(5)+ O(fl/w).  (224)

U+s2 xp+ii(s)—u(x+sp)= dme

where x denotes the position of the particle centre of mass, and where we introduced
the circumferential average ii,(s) of the slip velocity (Solomentsev & Anderson 1994):

21

Note that this model, which describes the disturbance flow around the particle as
that induced by a line distribution of point forces only, neglects the effects of particle
thickness on the flow, and is therefore only valid for very slender particles. To account
for the thickness of the particle, distributions of higher-order singularities (typically
potential dipoles), would have to be included in the formulation, as previously done
for instance by Claeys & Brady (1993) in their Stokesian dynamics simulations of rigid
spheroids. These additional singularities however would all contribute to higher-order
terms in the slender-body equation (2.24).

The linear and angular velocities of the particle can then be obtained by integration
of equation (2.24):

iy (s) = - /zn uy(s, 0)d6. (2.25)
0

1/ log 2

U= / [ (x + 5p) — its(s)] ds + —==L(1+ pp)- F, (2.26)
20 ), 8l
3/ / . 3log2y

=55 /, sp X [w(x +sp) — @s(s) ds + sl 1 (2.27)

Here F and T denote the external force and torque on the particle:

! !
F = / f(s)ds, T = / sp X f(s)ds. (2.28)
— I
In particular we will show below that the interaction of the induced dipole of the rod
with the applied field results in an electric torque on the particle, calculated in §2.4.

In addition to yielding simple expressions for the motion of the particle, this slender-
body formulation also allows an easy calculation of the disturbance flow induced by
the particle. Indeed, the disturbance flow is that created by the line distribution of
point forces f(s), which is known from inverting equation (2.24):

Fls) = 4““y (I— ;pp> U452 x pt () —u(x+sp). (229

Equation (2.29), along with equations (2.26)—(2.27), entirely determines f(s) provided
that the external force and torque on the particle, the imposed flow velocity, and the
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FiGgure 3. Tangential and normal components (with respect to the orientation vector p) of the
dimensionless circumferentially averaged slip velocity i,(s)/(¢ E2 /11), for various orientations
¢ of the electric field.

circumferentially averaged slip velocity are known. The disturbance velocity field at
a position y in the fluid is then obtained as a convolution:

1 i
W) = g [ Klixtsp)- f)ds (2:30)

where K is the appropriate Green’s function for Stokes flow. For a particle suspended
in an infinite fluid, K is the Oseen—Burgers tensor:

(y—x)(y—x)‘ (231)

K(y;x)=K(y—x) = y— 7] =’

2.3. Slip velocity linearization

The previous discussion showed that the induced-charge electrophoretic motion of
a slender body, along with the associated disturbance velocity field in the fluid, are
entirely determined by the circumferentially averaged slip velocity #,, which can be
obtained by averaging equation (2.19) over the azimuthal direction. Its tangential and
normal components with respect to the orientation vector p are

. eE2 2025% + (1 —s%)(GL/Gy ) tan’ 9]
pp-us(s)=—7scﬁcos2¢ {1— 2(1_s2+;2s2)” }z, (2.32)
. eE; : (I+a®)(1—=5Y)] .
(I— pp) - ii,(s) = o sG, G cos¢sing [1 T —stals?) X (2.33)

These components are plotted in dimensionless form in figure 3 for an aspect ratio
of ='=20 and for various orientations ¢ of the electric field. Figure 3 shows
that both components vary almost linearly along the axis of the particle, the only
significant departure occurring near the ends. This is also confirmed by an expansion
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of equations (2.32)—(2.33) as @« — 0, and justifies the following linearization of the
slip velocity for high-aspect-ratio particles:

~ eEL o o s
pp - i(s) = — " sGicos ¢z, (2.34)
. eE? R
(I— pp) - u,(s) = " sG,Gcospsing x, (2.35)

where in each case the error in the linearization is of O(«?). Equations (2.34)—(2.35)
are conveniently recast in a frame-independent manner:

iiy(s) ~ —%(p BB, + 0(c?), (2.36)

where we have introduced the following notation:
E.=[Gpp+1G.(—pp) - Ev. (2.37)

Note that in the limit of high aspect ratio («~' > 1) we have E., ~ E.

From the discussion of §2.2 on slender-body theory, we infer that the induced
translational velocity is zero: U, =0. The normal component of the slip contributes
to an angular velocity:

2, =-pxE.(p-E.). (2.38)
7
The force distribution along the particle axis is linear and is given by
2mes ~
=— -E.). 2.39
1) = ~joaay PP E) (239)

Equation (2.30) can then be used to evaluate the velocity disturbance in the fluid.

It is enlightening for the purpose of understanding hydrodynamic interactions
between suspended particles to investigate the far-field behaviour of the velocity
disturbance. The asymptotic behaviour as |x|// — oo can be obtained by performing
a multipole expansion about the centre of the particle, in which it is straightforward
to see that the linear force distribution only contributes to the first force moment,
termed force dipole (Kim & Karrila 1991). This was pointed out by Batchelor (1970),
who observed that a linear force distribution on a slender body results in stresslet
and rotlet flows in the far field. In the case of interest here, the rotlet flow is zero
since induced-charge electrophoresis creates no torque and the force distribution
equation (2.39) is tangential to the rod axis. The stresslet disturbance flow u’; can be
shown to be

, (x-S-x)x
=-3— 2.40
uS(x) 87'5/,L|x|5 ( )
where the second-order traceless tensor S is given by
dnel’ - I
=_—(p-E,) —= . 2.41
310g2y(p ) (pp 3> (2.41)

An important conclusion of this analysis is the far-field decay as 1/|x|*> and scaling
with (log2y)~! of the velocity disturbance, as shown by equations (2.40)~(2.41). In
particular, this can be compared to the decay of the electric field perturbation as
1/|x|3, which furthermore scales with =2 (§2.1.1): this remark will justify neglecting
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electric interactions between particles compared to hydrodynamic interactions in the
subsequent discussion. Note that electric interactions may still become significant
when two particles get very close to one another. In that case electric field gradients
may indeed result in dielectrophoretic effects, which are not included in the present
discussion: additional work will be required to determine the precise importance of
these effects.

2.4. Electrorotational torque

In addition to the angular velocity £, induced by the slip velocity on the particle
surface, rotation also occurs as a result of the interaction between the applied electric
field and the dipole moment of the disturbance potential @ (x)— &, which creates an
electrorotational torque (e.g. Jones & Washizu 1996; Han & Yang 1996; Squires &
Bazant 2006). More precisely, a multipole expansion of the disturbance potential
around the centre of the rod can be written as

1 d-
@(x)—f—Eoc-xz—d a

2.42

4me |x|3 (242)
where the dipole strength d is easily obtained from equation (2.8) as
c 8 N

d = —4ne / (c* —s?)(B22 + BLxx)  E ds = gnsl3a2Ew. (2.43)

A similar expression was previously obtained by Han & Yang (1996). The dipole
moment d results in an electrorotational torque on the rod given by T.,=d X E,
and yields the following angular velocity:

= 3log2y = .910g2)/EaO «

8mpul3 uy?

which also contributes to the alignment of the rod in the direction of the field. Note
however that this angular velocity is weaker than that induced by the slip velocity
(equation (2.38)) by a factor of log2y/y>~0.01 for y =20. The electrorotational
torque T, which could easily be carried along, will therefore be neglected in the
remainder of the paper.

E,, (2.44)

3. Pair interactions

Substantial information about the macroscopic behaviour of a suspension can be
obtained by a detailed understanding of pair interactions. In the following we use the
results of the single-particle model of §2 to derive expressions for the relative motion
between two rods undergoing induced-charge electrophoresis. A detailed model based
on interactions between slender bodies is used to calculate the relative velocity in
§3.1; asymptotic expressions for this velocity are also obtained in Appendix A by the
method of reflections (Kim & Karrila 1991). We then apply the results of §3.1 to
evaluate the pair distribution function in a dilute suspension of aligned rods in §3.2.

3.1. Relative velocity

As depicted in figure 4, we consider two rod-like particles, which for simplicity we
take to be aligned in the direction of the electric field: p, = p, = p. This assumption
is reasonable as we showed that the electric field causes the particles to reorient;
even in Brownian suspensions good alignment can be observed at sufficiently high
Peéclet number (§5.2.1). Let x = x> — x; be the separation vector between the particle
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Rod 2

x=x-x

&0

Rod 1

FIGURE 4. Particle pair considered in the analytical model of § 3. For simplicity, the two rods
are assumed to remain parallel and aligned in the direction of the electric field.

centres: we wish to determine the relative velocity U = x as a function of x. In this
problem the particles, which are assumed to be aligned with the field, are force-free
and torque-free (although this will be further discussed below): their only motion is
therefore due to the velocity disturbance in the fluid, which is determined by the force
distributions along the particle axes (equation (2.30)). Following the original idea of
Harlen, Sundararajakumar & Koch (1999), we make the simplifying assumption that
the force distributions can be linearized. This linearization was previously applied
with success to study the sedimentation of rod-like particles (Butler & Shagfeh 2002;
Saintillan, Darve & Shaqfeh 2005), and is appropriate in this case as the slip velocities
are themselves linear. For a force- and torque-free rod, the linear distribution is simply
given by

3
fa(sa) = 2]3say D, (31)

where @ = 1, 2. The scalar quantity %, is closely related to the magnitude of the
tensor S introduced previously (equation (2.41)), and will therefore also be called a
stresslet. It can be shown to be (Butler & Shagfeh 2002)

2T

[
T " [, — i, 2
ya IOg 2)/ /_l Sa D [ua(xa + Sap) ua(sa)] dsa, (3 )

where u), is the velocity disturbance created by the force distribution of rod g #«.
Recognizing that &, and u], are given by equations (2.36) and (2.30) respectively, an
equation can be derived that relates the two stresslets %, and %4

o

4mel? ‘2

3log2y // P K(x + (5o — 58)P) * Psosp dse dsy, (3.3)

2
* 813 log 2y
where K is again the Oseen—Burgers tensor (equation (2.31)). The first term on the
right-hand side of equation (3.3) is created by the slip velocity on rod «, and is to
be compared to equation (2.41). The second term however, which is linear in ¥, is
an induced stresslet which captures the effects of infinite reflections between the two
rods. By symmetry it is possible to see that the two stresslets are equal: ¥, = % = .%;
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FIGURE 5. (a) Contours of the relative velocity magnitude x = (U - x)/|x| between two parallel
rods of aspect ratio y =20. The interaction between the particles transitions from being
repulsive (dark grey) to attractive (light grey to white) when the direction of the separation
vector x changes from perpendicular to parallel to the electric field; the neutral line where
x =0 is drawn in black. The strongest attraction (white) occurs when the two rods are side
by side with an offset of about half a particle length. (b) Relative trajectories in the reference
frame of one of the two rods, calculated using the slender-body formulation of equation (3.5)
(full lines), and using the method of reflections as shown in Appendix A (equation (A 17),
dashed lines). Both methods yield indistinguishable results outside of a radius of approximately
three rod lengths, but the asymptotic result fails at shorter distances.

they can be easily obtained from equation (3.3) as

__ SmeGIELE i m= L / / o K(x 4 (2 —s0)p) - pisydsidss. (34)
24log2y +9H’ BJ),
Equations (2.26) and (2.30) then yield the relative velocity:
U=1x,—x =3y//1 K(x + (s2 — s1)p) * ps1ds; ds,. (3.5)
16mul* J J_,

This expression is to be compared to the asymptotic result derived by the method
of reflections and by multipole expansions in Appendix A. Using equations (3.4) and
(3.5), in which the double integrals can be evaluated numerically, we calculated the
relative velocity U for various separation vectors x. The results are summarized in
figure 5(a), which shows contours of x =(U - x)/|x| in the plane containing the two
rods. In particular, we observe that depending on the separation vector the rods
are either attracted or repelled. For separation vectors x that form an angle of less
than approximately 55° with the electric field, attraction is observed, while repulsion
occurs for other orientations. The strongest attraction, as indicated by the white
region, occurs when the two rods are side by side and offset by about half a particle
length. The presence of distinct regions of attraction and repulsion suggest that
pairing may occur: this will be confirmed in the next section where we calculate
the pair distribution function in a dilute suspension, as well as in the more detailed
simulations that we describe in §4 and § 5. Figure 5(b) also shows relative trajectories
in the reference frame of one of the two rods, calculated using both equation (3.5)
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and the far-field approximation obtained in Appendix A by the method of reflections
(equation (A 17)). In particular, a comparison of the two methods shows that the
method of reflections provides accurate results outside a radius of approximately
three rod lengths, but fails at closer distances.

A few comments on the limitations of our model are in order. The two assumptions
that the rods are both torque-free and aligned in the direction of the field are rigorously
incompatible: hydrodynamic interactions indeed would cause slight rotations even in
the presence of the electric field (see Appendix A), that could only be prevented by
application of an external torque. However, departures from the exact alignment are
typically very weak even when the rods are nearby (see figure 11(d) for instance), so
that the error incurred by either neglecting rotations or neglecting the torque required
to keep the rods aligned can be expected to be small. Other effects that have been left
out and may play a role are close particle interactions such as excluded volume and
lubrication: these are likely to influence velocities and trajectories in the near field,
and will be accounted for in §4 and §5.

3.2. Pair distribution function

Our knowledge of the relative velocity between two rods (equation (3.5)) can be used
to evaluate the pair distribution function in a dilute suspension. In the dilute regime
pair interactions are most frequent, so that following Batchelor & Green (1972) we
can define P(xo + x|xo;¢) as the probability density function at time ¢ for finding
a rod at position xo+ x knowing that a rod is located in x,, where once again all
rods are assumed to remain aligned in the direction of the field. Outside the region
of excluded volume, P can be normalized as

P(xo+ x| x031) = np(x/2;1), (3.6)

where n is the number density in the suspension, and p tends to 1 as |x|/2] — co. In
the absence of Brownian motion, p satisfies the following conservation equation:

9
zTI; +V-(Up) =0, (3.7)
which at steady state reduces to
U-V(logp)=-V-U. (3.8)

In equations (3.7) and (3.8), U is the relative velocity between two rods separated
by x, and is given by equation (3.5). In particular, the expression found for U has a
non-zero divergence:

V-U = 167‘C Z4V9 // K(x+(Sz—S1)p) psldsldszséO (39)
which is a consequence of accounting for multiple reflections between the two rods
in equation (3.3). Integrating equation (3.8) analytically is not tractable in general,
although we show in Appendix B that an asymptotic solution can be obtained in
the far field. However the method of characteristics can be employed to obtain a
numerical solution, by simultaneously integrating the two following equations:

dx

o = U, (3.10)

d
a(logp) =-V-U(x), (3.11)
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FIGURE 6. Pair distribution function p(r/21, z/2l) in a dilute suspension of rods of aspect ratio
y =20, obtained by numerically solving the conservation equation (3.8) using the method of
characteristics (equations (3.10)—(3.11)). The distribution function is normalized so that it tends
to 1 far from the origin. The value of p was set to zero along the segment [0, 1] of the z-axis
to reproduce the effects of excluded volume.

subject to the boundary condition p(x) — 1 as |x| — oo. These equations were
integrated numerically using a fourth-order Runge-Kutta time-marching scheme,
along with a 50-point Gauss—Legendre quadrature for the double integrals in the
expressions for the velocity. The results for rods of aspect ratio y =20 are shown in
figure 6, in which the value of p was set to zero along the segment [0, 1] of the z-axis
to reproduce the effects of excluded volume. The pair distribution of figure 6 presents
several interesting features. In particular the presence of a sharp peak (white region)
shows that there is a high probability of finding two particles next to one another,
with an offset of slightly more than half a rod length, i.e. that particle pairings can be
expected in a suspension. Conversely, the black region near the origin corresponds to
a depletion, and suggests that it is highly unlikely for two particles to remain aligned
side by side, as could have been expected from the relative velocity field of figure 5.
Once again, the pair distribution of figure 6 can only be taken as qualitative owing
to the limitations mentioned above; in particular close particle interactions will affect
the shapes of the pairing and depletion regions as shown in § 5.

4. Simulation method

In this section we describe a method for the simulation of high-aspect-ratio rod-
like particles undergoing induced-charge electrophoresis, which includes both far-field
hydrodynamic interactions and near-field lubrication forces, as well as Brownian
motion. The method, which can be viewed as an extension of the two-particle model
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of § 3 to larger assemblies of particles, is based on the work of Butler & Shaqgfeh (2002)
for non-Brownian fibre suspensions, and is accelerated using the smooth particle-mesh
Ewald algorithm described by Saintillan et al. (2005). Brownian motion is included in
a self-consistent manner using a spectral approximation of the mobility square-root
first suggested by Fixman (1986), in a similar way as was done in Stokesian dynamics
simulations by Banchio & Brady (2003).

4.1. Mathematical formulation
4.1.1. Equations of motion

We consider a periodic system of N rods of aspect ratio y in a box of dimensions
L, x Ly, x L,. We denote by x, and p, the position and orientation vectors of a
given rod =1, ..., N. Equations of motion for x, and p, are obtained from the
slender-body formulation of §2.2:

12
X, = / u,ds, +(I+ p,p,) - FY, (4.1)
~12
12
by =12 (1= popy)- / s[u, — Peits] dso + 12 (I— pyp)- FY,  (42)
—12

where F¥ and F!" denote the zeroth and first moments of the force distribution
along the rod of interest, respectively. In particular, in equation (4.2) we have replaced
the angular velocity £, and the torque T, on the particle by the rate of change p, of
the orientation vector and by the first force moment F'", which avoids complications
from dealing with pseudo-vectors (Butler & Shaqgfeh 2002, 2005):

12
P =U—p,p,) (2% p,), F = / Saf o(Sa) e (4.3)
—1/2
If needed, 22, and T, can be obtained by the relations £2,=p, x p, and T, =
p, x F'V.
In this section and for all Brownian simulations, equations are made dimensionless
by the following length, time and velocity scales:

32mul? I kTlog2y

l(,=2l’ [czi’ c_i_i.
kT log2y . t. 16mul?

(4.4)
The thermal time scale 7. can be viewed as the characteristic time for a rod to diffuse
over a distance equal to its length under the action of Brownian motion. In the case
of non-Brownian systems discussed in §5.1, we shall use the electroviscous time, or
characteristic time for fluid advection along the length of a rod under the action of
the slip:

" l. 2eE2l

=== e 45
eE2 ! t, u (4)

The equations for the non-Brownian case can easily be obtained by setting the
Brownian forces and torques to zero and changing the non-dimensionalization.

In equations (4.1)—(4.2), u,, is the velocity disturbance induced by rods 8 #« and
evaluated at position x, + s, p, along the rod axis; its calculation is explained in
§4.1.2. The dimensionless slip velocity &, is obtained from equation (2.36) as

Ic

ﬁé(sa’ pa) = _Sut(pa * ea)eou (46)
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where e, corresponds to E ., after non-dimensionalization:

eo =[G Pyp. +5G 10— p,p.)] " 2 (4.7)

and where we have chosen the z-direction as the direction of the electric field. The
strength of the electric field is captured by the Péclet number Pe in equation (4.2),
which compares the magnitude of the slip velocity to the thermal velocity scale u,:

_ 2elE3/n  32mel’EZ
 u.  kTlog2y’
Neglecting the electrorotational torque as justified in §2.4, the external forces and

torques on the rods will include contributions from Brownian motion, lubrication and
contacts:

Pe

(4.8)

FY=F)"+F)'+FY, F)=F}"+F}"'+F) (4.9)

o

The Brownian forces and torques, which model thermal fluctuations of the solvent
molecules, will be discussed in detail in §4.3. Lubrication interactions are short-
range hydrodynamic interactions, which occur when two particle surfaces come close
to contact (typically when the separation distance becomes of the order of a rod
diameter). They can be calculated for various surface geometries using the theory by
Claeys & Brady (1989); here we use the detailed formulae for spherocylinders given by
Butler & Shaqfeh (2002). Note that these interactions are linear in the relative velocity
between the two surfaces: their magnitudes are therefore indeterminate and must be
solved for as part of the problem. Finally, contact forces are required to prevent
overlap between the rods. We here follow the approach suggested by Durlofsky &
Brady (1989), and model contacts by strong and short-ranged repulsive forces. The
reader is referred to Butler & Shaqfeh (2002) and Saintillan et al. (2005) for more
extensive discussions on both lubrication and contacts.

4.1.2. Hydrodynamic interactions
Hydrodynamic interactions between rods are captured through the disturbance
velocity in equations (4.1)—(4.2), which is given by
N 1/2

1
: _ s —sapa)- L@l
u,(xy + 54p,) Slogly ,35—1 /_1/2 J(xo + 50 Py — x5 —spPg)* fp(sp)dsg.  (4.10)

The convolution kernel J is again the appropriate Green’s function for Stokes flow.
In §3, J was the Oseen—Burgers tensor K (equation (2.31)), which applies to a finite
number of particles in an infinite fluid. Here we use the periodic Green’s function
K,, which was derived by Hasimoto (1959) and accounts for periodic images in all
three space dimensions. As a particle does not feel its own velocity disturbance, we
subtract K from K, in equation (4.10) when o = 8:

K,(xo +Sap, —xp —sgpg) if a B,

Ky (sa —s5) — K(sa — 5p) if a=8. (4.11)

e sen s -
When o =B and s, = s the limit of K, (s, — 55) — K(so — 5g) is used.

Equations (4.1)—(4.2) and (4.10), along with the definition of the slip velocity and the
force balance equation (4.9), define an integral system for the force distributions f,
along all the rods. Instead of solving for the exact force distributions by discretization
of the rod axes (as was done for instance in the Monte-Carlo simulations of
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Mackaplow & Shagfeh 1998), we use the same approach as in the two-particle
model of §3 and linearize the force distributions as follows:

folse) = FO + 125, [(1— p,p,)* F + up,] . (4.12)

in which the scalar stresslet ., is now defined in dimensionless form as

1 2
Fum—s / SuPy * [U, — Peiil) ds,. (413)
—1/2

The linearization of equation (4.12) corresponds to the first two terms in a
spectral expansion of the force distribution using Legendre polynomials. Its level
of approximation, as discussed by Butler & Shaqgfeh (2002) and Saintillan et al.
(2005), is equivalent to that of Stokesian dynamics simulations in which a multipole
expansion is truncated after the dipole term (Brady & Bossis 1988).

The method of solution then proceeds as follows. Equations (4.6) and (4.10), when
substituted into the definition of the stresslet equation (4.13), allow one to write
a linear system for the stresslets ¥, (¢ =1, ..., N), and for the magnitudes of the
lubrication forces. This linear system is inverted using a preconditioned generalized
minimum-residual iterative method (see Saintillan et al. 2005). Once stresslets and
lubrication forces are known, the dynamic equations (4.1)—(4.2) are used to integrate
the position and orientation of the rod forward in time, using the midpoint algorithm
of §4.4.

The calculation of the linear and angular velocities from the knowledge of the
forces and torques on the particles corresponds to the so-called mobility problem (e.g.
Brady & Bossis 1988). Let % = [x,, p,]” denote the generalized velocity vector that
contains the linear and angular velocities of all the rods, and # =[F, F(']” the
generalized force vector that contains all the forces and torques of non-hydrodynamic
nature (i.e. excluding lubrication). The method described above allows the calculation
of % knowing &, which we can write symbolically as (Butler & Shaqgfeh 2005)

U=U + .- F, (4.14)

where %° is induced by the electrophoretic slip velocity, and .# is the grand mobility
operator. This operator, which is a function of the particle configurations and solvent
viscosity only, accounts for far-field hydrodynamics up to the stresslet term and
for near-field lubrication. Note that the method described here does not explicitly
compute the coeflicients of matrix .#, but rather allows the efficient evaluation of the
action of .# on a given force vector Z.

4.2. The smooth particle-mesh Ewald algorithm

The direct calculation of the disturbance velocity along the length of each rod
(equation (4.10)) is computationally intensive, with a quadratic cost in the number
of particles. In a previous study we implemented a fast method called the smooth
particle-mesh Ewald (SPME) algorithm, which reduces this cost to O(N log N) and
thereby allows the simulation of much larger systems (Saintillan et al. 2005). The
SPME algorithm, which is based on the Ewald summation formula of Hasimoto
(1959) and on fast Fourier tranforms, has similarities with the accelerated Stokesian
dynamics method of Sierou & Brady (2001). A brief outline of the method is given
here, and the reader is referred to our original paper for more details.

Using numerical quadrature to evaluate line integrals, we can rewrite equation (4.10)
as the velocity disturbance created by a discrete distribution of point forces
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F, (im=1,..., M) located at positions x,,:

M
W(x,)=> Ky(x,—x,) Fy, (4.15)
m=1

where K, is the periodic Green’s function for Stokes flow, from which the Oseen—
Burgers tensor is subtracted if the two points x, and x,, are on the same rod. As
shown by Hasimoto (1959), such a sum can be recast into the Ewald summation
formula:

M
W) => O AE x,— X+ p)-Fo+ Y exp(—2nik - x,)BE k) - F(k), (4.16)

p m=1 k0

where the first sum is over all point forces F,, and their periodic images (as represented
by the lattice vector p), and where the second sum over wavevectors k involves the
Fourier transform of the force distribution:

M
F(k)=>_F, exp(2mik - x,,). (4.17)

m=1
The parameter & in equation (4.16), called Ewald coefficient, is user-defined and
determines the relative importance of the two sums. The convolution kernels A and
B are the following second-order tensors:
A5, x) = mE P p(rE ) (12 P+ xx) — 26712 exp(—ng ! [x )L, (4.18)
B(§, k) = m&>t ' ¢y (& |kI*)(|kI*T — Kk), (4.19)

where 7 is the volume of the unit periodic cell, and the functions ¢, are incomplete
I'-functions:

d1(x) = %(1 +x). (4.20)

bu(x) = exp(—x) . erfc(\/})’
X 2x
The major advantage of the Ewald summation formula equation (4.16) over the
original convolution is that both tensors A and B now decay exponentially in
their second argument. This very fast decay, together with the presence of Fourier
transformations in the second sum, form the basis of the SPME algorithm. In SPME
the Ewald coefficient & is chosen so as to make all the terms in the first sum (or real
sum) negligible beyond a certain cutoff radius r.. This allows truncation at a finite
number of terms independent of the system size, so that the total cost of evaluating
the real sum at all the particle locations scales linearly with the number of particles.
For the second sum (or Fourier sum), the point-force distribution is assigned to a
Cartesian grid by B-spline interpolation, and then transformed to Fourier space using
the fast Fourier transform algorithm. The multiplication by the convolution kernel B
is performed in Fourier space, and an inverse Fourier transform and an interpolation
are applied to yield the value of the Fourier sum at the particle locations. The
total cost of the method is determined by the fast Fourier transform, which scale as
O(K log K), where K is the number of grid points and is chosen proportional to the
number of particles; very good accuracy can be achieved by either increasing K or
the interpolation order for the force assignment. A more thorough discussion of the
accuracy and efficiency of the method can be found in Saintillan et al. (2005).
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4.3. Brownian forces: Fixman’s method

The Brownian forces and torques appearing in equation (4.9) are random variables
that model the thermal collisions between the solvent molecules and the particles, and
must be calculated to satisfy certain statistical properties (e.g. Butler & Shaqfeh 2005).
Denoting by (-) the ensemble average, we require in particular that the generalized
Brownian force vector .#” have zero mean at any given time:

(F'(1)) =0, (4.21)

and that its variance satisfy the fluctuation—dissipation theorem from statistical
mechanics (e.g. Doi & Edwards 1986):

(FP(1)@ o)) =28(t — ") U, (4.22)

where §(¢) is the Dirac delta function, and ./ is the grand mobility operator introduced
in §4.1.2. The conditions (4.21)—(4.22) can be satisfied in a number of ways. In a
computer simulation where time is discretized, the generalized Brownian force vector
over a step of length At is typically calculated as (e.g. Bossis & Brady 1987)

2
Fr=\| =gy, (4.23)
At

where the matrix 4 can be obtained as either the square root or the Cholesky
decomposition of the inverse mobility: %+ #=.4"" or - B" = .4, and where W~
is a vector of length 6/N containing random numbers from a Gaussian distribution
with zero mean and unit variance.

Calculating the square root or the Cholesky decomposition of .#~!, in addition to
being computationally prohibitive with a cost of O(N?), also requires knowledge of
the coefficients of the grand mobility. As discussed by Saintillan et al. (2005) and in
§4.1.2, such knowledge cannot be obtained when using the SPME algorithm owing
the fast Fourier transforms which circumvent the direct calculation of .#Z. A solution
to this problem consists of using a spectral approximation of the matrix square
root, based on Chebyshev polynomials. This method, termed Fixman’s method after
its first application to hydrodynamic interactions inside polymer chains by Fixman
(1986), was more recently used in bead—spring simulations of polymers by Jendrejack,
Graham & de Pablo (2000), and in Stokesian dynamics simulations of colloidal sphere
dispersions by Banchio & Brady (2003). If we denote by [Amin, Amax] the range of the
eigenvalues of the grand mobility, we can find an approximation to the inverse square
root valid over that range on the basis of Chebyshev polynomials:

np

xRN (). (4.24)
i=1

The Chebyshev polynomials P; are calculated by recursion:

Py(X)=1, Pi(¥)=X P(¥)=2%P(X)— Pi1(X), (4.25)
where X € [—1, 1] is a shifted coordinate:
2x )Lmax + )bmin

¥ = — 4.26
* /lmax - ;Lmin ;Lmax - )Lmin ( )

The Chebyshev coefficients a;, which decay exponentially, can be calculated using a
fast cosine transform algorithm (Canuto et al. 1988). If equation (4.24) is uniformly
valid over the range of the eigenvalues, by transformation to the basis of the
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eigenvectors of ./ it is easy to see that the following approximation is also valid for
the mobility:

BN =MW =D aP(M) W (4.27)

i=1

for any vector #". The evaluation of the right-hand side in equation (4.27) using the
recursion formulae for the Chebyshev polynomials now only requires the action of
the grand mobility operator on given vectors, and can therefore be performed with
our algorithm.

As noted by Butler & Shaqfeh (2005), the grand mobility matrix defined in §4.1.2
is not positive definite: some of its eigenvalues can be shown to be zero owing to
the restriction that the orientation vectors p, must remain normalized. This prevents
the calculation of the inverse square root using the method described above, as no
valid polynomial approximation to x~'/? can be found over an interval of the type
[0, Amax]- Butler & Shaqfeh (2005) however noted that .# can be decomposed as:

M=K H, with A = [' 0 ] (4.28)
0 I—=p.p,
where each block in " has size 3N x 3N. In equation (4.28) the matrix .#’ is now
positive definite, so that Fixman’s method can be applied. A generalized Brownian
force vector that satisfies the fluctuation—dissipation theorem is then constructed as
follows:

Fh = ”Ait H B W, where B = (M) (4.29)

In our computer implementation we truncate the polynomial expansions so as
to maintain an accuracy of approximately three significant figures. The range of
the eigenvalues of the grand mobility, which determines the convergence of the
expansions, is calculated using an iterative method. As its determination can be quite
costly, the range is only updated when the particle configurations have changed
significantly. Larger errors are sometimes tolerated when two particles become very
close to one another, as lubrication interactions typically result in a very stiff grand
mobility, for which the convergence of the expansion is slow.

4.4. Time integration: midpoint algorithm

As recommended by Grassia, Hinch & Nitsche (1995) for the integration of Langevin
equations with configuration-dependent mobilities, we use the second-order midpoint
algorithm of Fixman (1978) to advance particle configurations in time. If we let
R, =[x", p']" denote the generalized configuration vector that contains all the rod
positions and orientations at time ¢,, the configuration %, at time ¢, =1, + At is
obtained by a two-step procedure:

Re = Rn + 5 U+ My (Fo+ T A, (4.30)
Rni1 = Re + UL+ M.+ (F+ F))] At (4.31)

where %° is the generalized velocity vector containing the angular velocities from
induced-charge electrophoresis (e.g. equation (4.2)), and where all hydrodynamic
interactions (including lubrication) are contained in the grand mobility. Most
importantly, the Brownian forces #°, which are obtained using the method discussed
in §4.3, are not updated during the second step (equation (4.31)): this allows the
drift term (V - .#)Art that arises in Langevin equations with configuration-dependent
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mobilities to be reproduced, and which one would need to include explicitly in a
first-order integration scheme (Ermak & McCammon 1978; Fixman 1978; Grassia
et al. 1995).

5. Results and discussion

We start by describing results for non-Brownian suspensions (infinite Péclet number
limit) in §5.1, in which the effects of induced-charge electrophoresis on the dynamics
can be isolated; Brownian motion is then discussed in § 5.2. The non-Brownian results
were typically obtained in suspensions of 400 rods, whereas smaller systems of 60 to
100 rods were used in the Brownian case. In all simulations 8 quadrature points were
used along the rod lengths.

5.1. Infinite Péclet number
5.1.1. Particle distributions and pair probabilities

A typical particle distribution at infinite Péclet number is shown in figure 11(d) at
steady state, where we see that all particles are very well aligned in the direction of the
electric field (z-direction). This alignment occurs rapidly as soon as the field is turned
on, and remains very strong, with some fluctuations occurring as a result of particle—
particle interactions. These fluctuations are more frequent in more concentrated
suspensions, but for all concentrations investigated the second moment {(p.p.) of the
z-component of the orientation vector typically remained above 0.99.

Once the particles are aligned, hydrodynamic interactions result in relative motions
with no net velocity, which lead to a subtle rearrangement of the particle distributions.
In particular, snapshots of the suspensions show the presence of particle pairs, which
would be unlikely in a random suspension. More precisely, these pairing events
consist of the following steps: two particles are attracted from their ends, slide along
one another until they become side by side, then separate in the lateral direction.
These dynamics confirm the analysis of pair interactions carried out in § 3, where we
identified regions of attraction and repulsion.

While these pairing events are typically ephemeral, they are frequent enough to
modify the pair distribution function in the suspension. This is illustrated in figure 7,
which shows the pair distribution function p(r, z) (in cylindrical coordinates) at two
effective volume fractions n/* (where n is the number density and / the rod half-length),
where p is normalized so that it tends towards 1 at infinity. Figure 7 can be compared
to figure 6, which had been obtained by numerically solving the conservation equation
for the pair probabilities. While the two figures differ in details, the qualitative features
are similar. The region of excluded volume is located along the z-axis since the rods
are aligned in the direction of the electric field, and is coloured in black in figure 7. As
expected its length is approximately one rod length, and its width is of the order of
a rod diameter (in fact slightly less as orientation fluctuations often occur when rods
are close to one another). A very steep gradient is then observed near the tip and on
the side of the excluded volume region, where two sharp peaks are observed and are
the consequence of the pairings described above: the peak at the tip corresponds to
rods being attracted head-on, while the peak on the side corresponds to interactions
with a slight offset. A depletion region is also observed along the horizontal axis
(z=0), where the black region of excluded volume is seen to extend radially: this
depletion is the consequence of the repulsion that occurs when two rods are aligned
side by side. Further away from the excluded volume region p(r, z) quickly becomes
uniform in all directions and reaches its asymptotic value of 1. Interestingly p(r, z) is
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FIGURE 7. Pair distributions in a suspension of 400 rods of aspect ratio y =10 at infinite
Péclet number, at an effective volume fraction of (a) nl®>=0.1, and (b) nl®> =0.01. The black
region along the vertical axis is due to excluded volume, while the white patches around it
show proof of particle pairing.

qualitatively the same at both concentrations (n/3>=0.1 and 0.01), and in particular
pairing is still observed to occur even in quite dilute systems.

5.1.2. Hydrodynamic dispersion

The superposition of all the relative motions between the rods can be expected to
lead to a diffusive behaviour at long times. This is indeed confirmed by considering
mean-square displacement curves, as shown in figure 8. Initially the mean-square
displacements are observed to grow quadratically, corresponding to a convective
regime. However after several particle—particle interactions the motions decorrelate in
time, resulting in a linear growth characteristic of diffusive processes. Hydrodynamic
dispersion is a common phenomenon in non-Brownian particulate suspensions, and
in particular has been well-characterized in sedimentation (e.g. Ham & Homsy 1988;
Nicolai et al. 1995) as well as simple linear flows (e.g. Sierou & Brady 2004). While
in these instances dispersion occurs relative to a mean convective motion such as
settling under gravity or shear flow, the dispersion observed in figure 8 is atypical as
the mean motion of the suspension is zero.

Curves such as those of figure 8 can be used to calculate effective dispersion
coefficients. More precisely we define a hydrodynamic diffusion tensor D as

1d
= lim Ed—<(x(l)—xo)(x(f)—x0)>- (5.1)
As is obvious from figure 8 the tensor D is anisotropic, and for symmetry reasons
D, = D,,. Simulations also show that off-diagonal components are zero: D;; =0 for
i # j. Numerical results for D,, and D_, at various concentrations and aspect ratios are
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as a function of time, in a suspension of 400 rods of aspect ratio y =20 at an effective
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FIGURE 9. Hydrodynamic diffusivities at infinite Péclet number in the directions parallel
(z-direction) and perpendicular (x-direction) to the electric field, as a function of (a) the
effective volume fraction nl3 for rods of aspect ratio y =20, and (b) the rod aspect ratio y at
ni3 =0.1. The results were obtained in suspensions of 400 rods.

shown in figure 9, where D is made dimensionless by ¢ E2%/u. The dependence on the
effective volume fraction nl* is shown in figure 9(a), where we see that the diffusivities
increase with concentration, as a result of stronger hydrodynamic interactions. The
ratio D,,/D,, of the diffusivities parallel and perpendicular to the direction of the
electric field is roughly equal to 3.5 and approximately constant over three decades
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FiGURE 10. Velocity fluctuations (standard deviation of the rod velocities) at infinite Péclet
number in the directions parallel (z-direction) and perpendicular (x-direction) to the electric
field, as a function of (a) the effective volume fraction ni? for rods of aspect ratio y =20, and
(b) the rod aspect ratio y at nl*> =0.1. The results were obtained in suspensions of 400 rods.

of concentration. The dependence on the rod aspect ratio is shown in figure 9(b). It
is observed to be rather weak except at very low values of y, at which the validity of
the slender-body approximation used in the simulations becomes questionable. As y
increases, the diffusivities decrease slightly at a fixed n/*: hydrodynamic interactions
indeed become weaker at very high aspect ratio, as can be seen for instance from
equation (3.4).

5.1.3. Velocity statistics

We also characterize the velocity fluctuations in the suspension, which are another
consequence of the relative motions between the rods. Figure 10 shows the standard
deviations o,, and o, of the rod velocities in the x- and z-directions at various
concentrations and rod aspect ratios. Note that these are typically very weak in the
dilute regime, because of the relatively rapid decay as 1/r> of the interactions
(compared to 1/r in sedimentation for instance, where very strong fluctuations
arise). As shown in figure 10(a) the velocity fluctuations increase with concentration
according to a power law:

2 E?
Oupr O, ~ =2 ()0, (5:2)
and the ratio of the fluctuations parallel and perpendicular to the direction of the
electric field is again approximately constant and equal to o, /o, ~ 1.8, which is of
the order of the square root of the ratio of the diffusivities. As in the case of the
diffusivities, figure 10(b) shows that the dependence of velocity fluctuations on the

rod aspect ratio is weak, except at very low values of y.
5.2. Finite Péclet number
5.2.1. Orientation statistics

We now consider the effects of Brownian motion, which introduces both rotational
and translational diffusion. Typical particle distributions at various values of the
Peclet number (i.e. for various electric field strengths) are shown in figure 11. When
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FiGURe 11. Typical particle distributions at steady state in suspensions of 60 rods of aspect
ratio y =20, at an effective volume fraction of n/> = 0.05, and at various electric field strengths:
(a) Pe =0 (no electric field), (b) Pe =100, (c) Pe =1000, and (d) Pe =oco (no Brownian motion).

no field is applied (Pe =0), the rods assume random positions and orientations, and
as the Péclet number increases the alignment of the rods in the direction of the field
becomes stronger. As already discussed in §5.1, the alignment is almost perfect in the
infinite Péclet number limit where Brownian motion is negligible.

The dependence of the orientation of the rods on the electric field strength is made
more quantitative in figure 12, which shows simulated orientation distributions ¥ (¢)
at various values of Pe, where ¢ denotes the angle between the directions of the
electric field and of the rods, and where the following normalization was used:

/nlll(zp)sinzpdqb =1. (5.3)
0
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FIGURE 12. Orientation distributions ¥ (¢) at various Péclet numbers in suspensions of rods
of aspect ratio y =20 at an effective volume fraction of nl*> =0.05, obtained from simulations
(symbols) and from the dilute theory of equation (5.6) (lines).

Figure 12 also compares the simulation results to an analytical solution for the
orientation distribution in the limit of infinite dilution. Indeed, if the effects of
hydrodynamic interactions on orientations can be neglected, the probability density
function ¥ (p) for the orientation vector p of a given rod satisfies the following
Fokker—Planck equation (e.g. Doi & Edwards 1986):

v .

SV () =V, (DY) =0, (54)
where V, is the differential operator in orientational space (e.g. Advani & Tucker
1987); p denotes the rotational velocity of the rod induced by the electric field and
is given by equations (2.27) and (4.3), and D, =3kT log2y/8nul® is the Brownian
rotational diffusivity of the rod. At steady state the distribution only depends on the
angle ¢, and equation (5.4) reduces to

[ e . 3kT log2y 92
| 20 W —_— =0 5.5
5 (126G s wie)) + FLEEY L w) —o, (55)
the solution of which is a Boltzmann distribution:
P
W () = Aexp (9; GG cos 2¢> . (5.6)

The constant A is easily determined to satisfy the normalization condition of
equation (5.3). As shown in figure 12, the orientation distributions present a peak
near ¢ =0, which becomes sharper as the electric field increases. Excellent agreement
between the simulated results and the exact solution for infinite dilution is observed
at the concentration shown, although larger departures can be expected at higher
concentrations.

The evolution to steady state for the orientation distributions is illustrated in
figure 13, which shows the time evolution of the second moment (p.p.) of the
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FIGURE 13. Evolution of the second moment (p,p.) of the z-component of the rod orientation
vectors after application of an electric field in Brownian suspensions of rods of aspect ratio
y =20 at an effective volume fraction of n/3>=0.05. The plot shows both simulations data
(dashed lines) and exponential fits (full lines) at various electric field strengths.

z-component of the rod orientation vectors, where the electric field is suddenly
applied at t =0. Initally the rod orientations are random owing to Brownian motion,
hence the value of 1/3; as time goes on the rods align with the field, resulting
in the steady increase of (p.p,). A plateau is finally reached, the value of which
indicates the degree of alignment in the suspension. As already observed in figure 12,
the alignment is stronger at high Péclet numbers. The characteristic time for the
alignment also depends on the electric field strength, and is observed to be shorter at
high Péclet numbers.

5.2.2. Pair probabilities

We also discuss the effects of Brownian motion on the particle pairing previously
described in § 5.1.1. Figure 14 shows simulated pair distribution functions in Brownian
suspensions at the same aspect ratio and concentration as in figure 7(a), for various
values of the Péclet number. When no field is applied (Pe=0), the rods assume
random orientations and positions resulting in the isotropic pair distribution of
figure 14(a): a depleted region of spherical shape and characteristic size / exists near
the origin owing to excluded volume, beyond which the pair distribution rapidly
reaches its asymptotic value of 1. When a weak field is applied (e.g. Pe =100,
figure 14b), the depletion region is distorted and stretches in the direction of the field,
as a result of the alignment of the rods; yet the pair distribution remains qualitatively
very similar to the case Pe=0, and in particular no pairing is observed. Pairing
only appears at much higher values of the Péclet number, as shown in figures 14(c)
and 14(d): beyond Pe = 1000, peaks in the pair distributions surround the tip of the
depletion region, which is now much narrower. At Pe = 5000 the effects of Brownian
diffusion become negligible and the pair distribution is qualitatively similar to the
non-Brownian case of figure 7.
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FIGURE 14. Pair distributions in Brownian suspensions of 60 rods of aspect ratio y =10 at
an effective volume fraction of nl°> =0.1, and at various electric field strengths: (¢) Pe=0 (no
electric field), (b) Pe =100, (¢) Pe=1000, and (d) Pe=5000.

6. Concluding remarks

We have presented a study of the behaviour of dispersions of infinitely polarizable
slender rods in an electric field, with and without Brownian motion. We first derived
a simple model for particle motions and interactions, based on the thin double layer
approximation and on slender-body theory, and valid for high-aspect-ratio particles. In
particular, we showed that the effects of the nonlinear induced-charge electrophoretic
flows on the particle surfaces can be modelled by a linear slip velocity along the
rod axes, which causes the alignment of the rods in the direction of the electric field
and induces linear distributions of point-force singularities. These distributions of
point forces drive stresslet disturbance flows in the surrounding fluid, resulting in
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hydrodynamic interactions. We then applied this slender-body model to study the
relative motions of two suspended rods: approximate expressions were calculated for
the relative velocity between two aligned rods, and a semi-analytical solution was
obtained for the pair distribution function in a dilute dispersion. The presence of a
peak in the pair distribution function suggests that particle pairing can be expected
as result of the relative motions.

More detailed information on the particle dynamics was then obtained using
numerical simulations. We have described a simulation method based on interactions
between slender bodies, which includes both far-field and near-field hydrodynamic
interactions as well as Brownian motion. Simulations at infinite Péclet number
(negligible Brownian motion) confirmed the existence of pairing, and qualitative
agreement was obtained between the semi-analytical and simulated pair distribution
functions. The superposition of the disturbance flows induced by the rods was also
shown to result in a diffusive motion at long times, and hydrodynamic dispersion
coefficients were calculated. Finally the effects of Brownian diffusion were discussed,
and we showed that both particle alignment and pairing are made weaker by Brownian
motion.

The results discussed in this paper have implications for colloid science and
microfluidics, where electric fields are commonly used to control the orientation of
anisotropic particles (e.g. Han & Yang 1996; van der Zande, Koper & Lekkerkerker
1999). While previous studies have focused on the determination of the rotational
motion of the particles while overlooking hydrodynamic interactions, this work
demonstrates that the latter can be relevant even in the case of uncharged particles, as
relative motions created by induced-charge electrophoresis can lead to a non-random,
possibly non-uniform microstructure.

Our discussion has focused on neutrally buoyant particles in the bulk of a
suspension, an ideal situation which allowed us to isolate the effects of induced-charge
electrophoresis, but which may seldom occur in practical situations. In particular,
metallic colloids are typically non-neutrally buoyant, and settling under gravity may
lead to interesting phenomena. Sedimenting suspensions of anisotropic particles such
as rods and disks have been known to undergo a concentration instability, by which a
well-mixed suspension develops inhomogeneities as a result of the coupling between
the translational and rotational motions of the particles (e.g. Koch & Shagfeh 1989;
Butler & Shaqgfeh 2002; Saintillan, Shaqfeh & Darve 2006; Metzger, Guazzelli &
Butler 2005). Both induced-charge electrophoresis and Brownian diffusion may
disrupt this coupling and prevent the instability from developing. The effects of
confinement may also be significant in some applications, notably in microfluidic
devices: interactions with solid boundaries are therefore worthy of interest, and will
be the focus of our future work.

The authors thank Klint A. Rose and Juan G. Santiago for discussions on their
experiments and on this work. E.D. gratefully acknowledges funding from Canon Inc.

Appendix A. Pair interactions by the method of reflections.

This appendix uses the method of reflections (Kim & Karrila 1991) combined with
multipole expansions to analytically derive an asymptotic expression for the relative
motion between two aligned rods as a series in powers of [/|x|. Note that a similar
series can also be obtained by expanding equations (3.3)—(3.5); however the method



254 D. Saintillan, E. Darve and E. S. G. Shaqfeh

of reflections provides an intuitive justification for these equations, and does not make
any assumptions on the linearity or direction of the force distributions along the rods.

A.1. Zeroth-order velocity

We consider the situation of figure 4 where the two rods are aligned in the direction
of the electric field and the first rod is located at the origin. The first step of the
method of reflections consists of determining the linear velocity of the second rod
placed in the electrophoretic disturbance field that the first rod would create if it
were by itself. This disturbance field is that induced by the linear force distribution
of equation (2.39), which for an aligned rod simplifies to

S5 = =05, GlELp. (A1)

From equation (2.30) the disturbance velocity at an arbitrary position x is

1
W) = g [ Kx—sip) £ dsi (A2)

Expanding K(x —s; p) in a Taylor series around s; =0, and substituting equation (A 1)
for the force distribution, we can express the disturbance velocity as

00 = ST 2 k4 E ppp vk - p ot 00x ). (A3)

up'(x)=——\|—p- x)+ — : x)| - x|7°).

! dulog2y | 3 7 15PPP P
Note that only odd derivatives appear in the expansion owing to the linearity of the
force distribution. Introducing the notation cos ® = (x - p)/|x|, explicit evaluation of
the derivatives yields

X
p-VK(x):-p=(l —3cos2(~))W, (A4)
ppp : VVVK(x)* p = (—9 4+ 90 cos’ ® — 105 cos* @)&

+ (=18 cos @ + 30 cos’ @)ﬁ. (A5)

The translational velocity of the second rod placed in the disturbance field u(10) is then
given by equation (2.26):

1 1
Y = 5 / u\”(x; + s, p)ds,. (A6)
—I

This time, expanding u(lo)(xz + s, p) in a Taylor series about s, = 0, we find
1? _
UY = u(xy) + R VVu (x2) + O(|x2|°). (A7)

Substituting the expression found for u(lo) (equation (A 3)), we obtain the velocity of
the second rod as
eGIE.l
U = 1" 1(1 —3cos’ @)
6 log2y

2 4

x! xl

4
s+ o(=3+ 30cos’> ©@ — 35cos* ©) S
|x[* 5 |x]
pl* -
Pa| o (s

4
+ g(—6cos@) + 10cos® ®)
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where we have used x, = x. Similarly, u\’ induces a rotation of the second rod at an
angular velocity given by equation (2.27):

3 i
.Q(zo) = 2P/ $HP X u(lo)(xz + 5, p)dss, (A9)
-1
or, upon expansion of u(lo)(xz + s, p) about s, =0:
1? _
20 = p < (- ul) + {5 o0 VYT 1)) 4 OO (A10)
All calculations done, the zeroth-order angular velocity is found to be
eG>E>1 IE
O = 177 (36050 +15c0s’ @)L
5 Sulog2y [( cos ® + 15cos’ @) s
p x xI’

+ 15(15¢cos @ — 70cos* ® + 63 cos’ @)

- ] +0(|x]7%). (A1)
| x|

For obvious symmetry reasons, the velocity of the first rod induced by the electro-
phoretic flow on the second rod is the opposite of equation (A 8), while both angular
velocities are the same.

A.2. First reflection
(0)

In addition to causing the motion of the second rod, the zeroth-order disturbance u;
created by the first rod also induces a force distribution along the second rod, given
by equation (2.29):
4t
3 (52) =

log2y

(1= 1pp) - [U9 4520 x p— a2+ 2p)] . (A1)
which creates the following disturbance flow:
(1) o )
) = g [ K= ma—sap) s b (A13)

Expanding both K(x — x, — s, p) and u(lo)(xz + 5, p) in Taylor series about s, =0 yields

l3 Bf(l)(s )
(1) > (52 6
=— “VK(x — x5)» —— — Al4
u; ' (x) Slog2y ” VK(x — x2) s _0'1' O(|x —x2| ), (A 14)
which convects the first rod at a velocity
1/
U = o [ (e +sip)ds = (k) + O(1x) — %2 ™), (A15)

2,

The derivatives in equation (A 14) can be calculated, and recalling that x, — x; =x
we find that the first reflection of the electrophoretic velocity from the second rod
back to the first rod results in the following velocity:

1 EGﬁE;l 2 4 6 oy X1 6
UY = — 1 = _(1—15c08*® + 51cos*® —45cos® ©)— + O(|x|%). (A 16)
18/4(log 2y )? |x[6
For symmetry reasons the first reflection on the second rod leads to U (21) =-U (11).

Note that the reflected disturbance flow equation (A 13) also induces an additional
angular velocity on the first rod, but this angular velocity scales as O(|x|~®) and
therefore is not computed here.
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A.3. Relative motion to order |x|™®

Realizing that the relative velocity between the two rods is equal to U =2U,, the
above derivations provide an asymptotic expansion for U valid to order |x|~°:

U=U%+U"Y+0(x|™), (A17)
where
8G2E2l l l4
O 1% (1—3cos’ @) —35cos* @)x—
3ulog2y |x/? X[
+ ( 6cos ® + 10 cos’ @)l ‘4 , (A18)
M _ eGE}] AL
Sullog 2y (A1)
Both rods also rotate at the same angular velocity:
eG2E2] 3
| =0 pxXx
= — — |(=3cos® + 15cos’ ®)
2ulog 2y |x[*

p x xI®
|x[®

+15(15c0s ®@ — 70 cos® ® + 63 cos’ O) +0(|x7%). (A20)
Higher terms in the expansions could be obtained by considering further reflections
of the disturbance field and keeping additional terms in the multipole expansions.
Importantly, one should note that the angular velocity is non-zero, and two rods
initially aligned with the electric field will not remain so. The assumption of
alignment with the field made in §3.1 is therefore not exact; yet simulations show
that departures from the perfect alignment are typically quite weak. Note also that
the same asymptotic expression for the relative velocity could have been obtained by
expanding equation (3.5) in a Taylor series; higher-order terms however would differ,
as the method of reflections can account for nonlinear force distributions, unlike the
slender-body model of §3.1 (see equation (3.1)).

Appendix B. Asymptotic form of the pair distribution function

Equation (3.8) for the pair distribution p(x) can be solved analytically in the far
field. The leading-order term in U is radial, as shown in equation (A 18), so that
in spherical coordinates (o, @) (where p =|x| and cos ® =(x - p)/|x|) equation (3.8)
simplifies to

£GiEL] I —3cos @)= (1 V-U B1

3M10g2)/( — JC0s );%(ng)—— . (B1)
It is easy to see that U” is divergence-free, and that the leading-order term in the
divergence is therefore V - U'). Calculating the leading-order term in V- U" and
integrating equation (B 1) subject to the boundary condition p(p, ®) — 1 as p —
yields

_ 2 o 4 .0\/3
(1—=12cos*® + 15cos* ®)l ) (B2)

5 8 = -

p(p, ®) =exp < 610z 2y 5’
using equation (A 19) from the method of reflections. In particular, p(p, ®) tends to
1 exponentially as p — 0.
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